Lew, Virgilio L.
Calcium ions mediate the volume homeostasis of human red blood cells (RBCs) in the circulation. The mechanism by which calcium ions affect RBC hydration states always follows the same sequence. Deformation of RBCs traversing capillaries briefly activates mechanosensitive PIEZO1 channels, allowing Ca2+ influx down its steep inward gradient transient...
Kirabo, Annet Masenga, Sepiso K. Kleyman, Thomas R.
Epithelial Na+ channels (ENaCs) are known to affect blood pressure through their role in transporting Na+ in the distal nephron of the kidney. While expressed in other epithelial tissues, there is growing evidence that ENaCs are also expressed in nonepithelial tissues where their activity influences blood pressure. This review provides an overview ...
Beacom, Michael J. Gunn, Alistair J. Bennet, Laura
Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines resea...
Korshunov, Kirill S. Prakriya, Murali
Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique insid...
Sharma, Arnav Niethamer, Terren K.
Endothelial cells (ECs) develop organ-specific gene expression and function in response to signals from the surrounding tissue. In turn, ECs can affect organ development and morphogenesis and promote or hinder disease response. In the lung, ECs play an essential role in gas exchange with the external environment, requiring both a close physical con...
Launikonis, Bradley S. Murphy, Robyn M.
For physiological processes in the vital organs of eutherian mammals to function, it is important to maintain constant core body temperature at ∼37°C. Mammals generate heat internally by thermogenesis. The focus of this review is on heat generated in resting skeletal muscles, using the same cellular components that muscles use to regulate cytoplasm...
Martinez-Navarro, Hector Zhou, Xin Rodriguez, Blanca
A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patie...
Gonzales, Jacques Gulbransen, Brian D.
Enteric glia are the partners of neurons in the enteric nervous system throughout the gastrointestinal tract. Roles fulfilled by enteric glia are diverse and contribute to maintaining intestinal homeostasis through interactions with neurons, immune cells, and the intestinal epithelium. Glial influences optimize physiological gut processes such as i...
Davis, Michael J. Zawieja, Scott D. King, Philip D.
Two major functions of the lymphatic system are the reabsorption of excess interstitial fluid/protein and the coordination of immune cell interactions and trafficking. Specialized junctions between lymphatic endothelial cells optimize reabsorption. The spontaneous contractions of collecting vessels provide active lymph propulsion. One-way valves pr...
Maisel, Katharina Outtz Reed, Hasina
The lymphatic vasculature maintains lung homeostasis via fluid drainage in the form of lymph and by facilitating immune surveillance and leukocyte trafficking to the draining lymph nodes. Previous studies in both humans and animal models have demonstrated an important role for lymphatics in lung function from the neonatal period through adulthood. ...