On Vortex Atoms and Vortons
Mechanical Maritime and Materials Engineering
Mechanical Maritime and Materials Engineering
Nous étudions les écoulements à l'aide des méthodes de calcul décrivant le transport du tourbillon. Ces méthodes sont basées sur une discrétisation volumique des zones tourbillonnaires en particules que l'on suit dans leur mouvement. Ces dernières portent un vecteur tourbillon qui évolue dans le temps en fonction des distorsions locales du champ de...
This paper presents an original approach for the detection of auto-organizated coherent structures in a fluid flow simulation. This method is based on vortex methods and multiagent systems. We then use automata to simulate the interactions between these structures and the induced evolution of their stability. AUTOMATA BASED MODELIZATION FOR FLOW ST...
This paper discusses the control of cylinder wakes via tangential wall velocity modifications. The wall velocity is piecewise constant (corresponding to belt actuators), and its amplitude is optimized using a clustering real coded genetic algorithm. This type of control significantly affects the vortical structures being shed in the wake, and it is...
Published in Environmental Fluid Mechanics
This work illustrates the discrete vortex method (DVM) as a tool for simulating environmental fluid mechanics problems involving transport in the wake of a bluff body. The DVM was used to model both the long-time-averaged and instantaneous features of flow past a circular cylinder. Simulations were performed for Re = 140, 000. Verification testing ...
Published in Proceedings of the National Academy of Sciences of the United States of America
Large-scale computations of dynamically interacting vortex tubes forming filaments are performed with a view toward investigating their relationship to turbulent fluid flow. It is shown that the statistical properties of the tubes are consistent with commonly accepted observations about turbulence such as the Kolmogorov inertial range spectrum and ...
We present an accurate Lagrangian method based on vortex particles, level-sets, and immersed boundary methods, for animating the interplay between two fluids and rigid solids. We show that a vortex method is a good choice for simulating bi-phase flow, such as liquid and gas, with a good level of realism. Vortex particles are localized at the interf...
The numerical truncation error of vortex-in-cell methods is analyzed a-posteriori through the effective spectral numerical viscosity for simulations of three-dimensional isotropic turbulence. The interpolation kernels used for velocity-smoothing and re-meshing are identified as the most relevant components affecting the shape of the spectral numeri...
The paper presents a two-dimensional immersed interface for the Vortex-In-Cell (VIC) method for simulation of flows past bodies of complex geometry. The particle-mesh VIC algorithm is augmented by a local particle correction term in a Particle-Particle Particle-Mesh (P3M) context to resolve sub-grid scales incurred by the presence of the immersed i...
The paper presents a two-dimensional immersed interface for the Vortex-In-Cell (VIC) method for simulation of flows past bodies of complex geometry. The particle-mesh VIC algorithm is augmented by a local particle correction term in a Particle-Particle Particle-Mesh (P3M) context to resolve sub-grid scales incurred by the presence of the immersed i...