Donnay, Laura Marteau, Charles

We show that the geometry of a black hole horizon can be described as a Carrollian geometry emerging from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual velocity of light tending to zero. We prove that the laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour equation...

Donnay, Laura Marteau, Charles

We show that the geometry of a black hole horizon can be described as a Carrollian geometry emerging from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual velocity of light tending to zero. We prove that the laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour equation...

Donnay, Laura Marteau, Charles

We show that the geometry of a black hole horizon can be described as a Carrollian geometry emerging from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual velocity of light tending to zero. We prove that the laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour equation...

Donnay, Laura Marteau, Charles

We show that the geometry of a black hole horizon can be described as a Carrollian geometry emerging from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual velocity of light tending to zero. We prove that the laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour equation...

Le Floch, Bruno Mezei, Márk

We deform two-dimensional quantum field theories by antisymmetric combinations of their conserved currents that generalize Smirnov and Zamolodchikov's $T\bar{T}$ deformation. We obtain that energy levels on a circle obey a transport equation analogous to the Burgers equation found in the $T\bar{T}$ case. This equation relates charges at any value o...

Le Floch, Bruno Mezei, Márk

We deform two-dimensional quantum field theories by antisymmetric combinations of their conserved currents that generalize Smirnov and Zamolodchikov's $T\bar{T}$ deformation. We obtain that energy levels on a circle obey a transport equation analogous to the Burgers equation found in the $T\bar{T}$ case. This equation relates charges at any value o...

Le Floch, Bruno Mezei, Márk

We deform two-dimensional quantum field theories by antisymmetric combinations of their conserved currents that generalize Smirnov and Zamolodchikov's $T\bar{T}$ deformation. We obtain that energy levels on a circle obey a transport equation analogous to the Burgers equation found in the $T\bar{T}$ case. This equation relates charges at any value o...

Le Floch, Bruno Mezei, Márk

We deform two-dimensional quantum field theories by antisymmetric combinations of their conserved currents that generalize Smirnov and Zamolodchikov's $T\bar{T}$ deformation. We obtain that energy levels on a circle obey a transport equation analogous to the Burgers equation found in the $T\bar{T}$ case. This equation relates charges at any value o...

Le Floch, Bruno Mezei, Márk

We deform two-dimensional quantum field theories by antisymmetric combinations of their conserved currents that generalize Smirnov and Zamolodchikov's $T\bar{T}$ deformation. We obtain that energy levels on a circle obey a transport equation analogous to the Burgers equation found in the $T\bar{T}$ case. This equation relates charges at any value o...

Le Floch, Bruno Mezei, Márk

We deform two-dimensional quantum field theories by antisymmetric combinations of their conserved currents that generalize Smirnov and Zamolodchikov's $T\bar{T}$ deformation. We obtain that energy levels on a circle obey a transport equation analogous to the Burgers equation found in the $T\bar{T}$ case. This equation relates charges at any value o...