Cherney, David Latini, Emanuele Waldron, Andrew

We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional N= 2 supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kaehler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergr...

Cherney, David Latini, Emanuele Waldron, Andrew

We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional N= 2 supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kaehler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergr...

Legendre, Eveline

We study compatible toric Sasaki metrics with constant scalar curvature on co-oriented compact toric contact manifolds of Reeb type of dimension at least 5. These metrics come in rays of transversal homothety due to the possible rescaling of the Reeb vector fields. We prove that there exist Reeb vector fields for which the transversal Futaki invari...

Salamon, Dietmar A. Walpuski, Thomas

This is an expository paper. Its purpose is to explain the linear algebra that underlies Donaldson-Thomas theory and the geometry of Riemannian manifolds with holonomy in $G_2$ and ${\rm Spin}(7)$.

Bonezzi, Roberto Latini, Emanuele Waldron, Andrew

Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein...

Bonezzi, Roberto Latini, Emanuele Waldron, Andrew

Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein...

Bonezzi, Roberto Latini, Emanuele Waldron, Andrew

Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein...

Bonezzi, Roberto Latini, Emanuele Waldron, Andrew

Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein...

Bonezzi, Roberto Latini, Emanuele Waldron, Andrew

Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein...

Bonezzi, Roberto Latini, Emanuele Waldron, Andrew

Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein...