Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...

Standard models of intertemporal utility maximization assume that agents discount future utility flows at a constant rate—exponential discounting. Euler equations estimated over different time horizons should have equal discount rates but they do not. Rising term yield premia imply discount rates that rise with longer horizons since uncertainty is ...