Mao, Pu-Jian Li, Ran Jia, Lin-Yu Ren, Ji-Rong

It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-K...

Ballesteros, Ángel Bruno, N. Rossano Herranz, Francisco J.

The -deformation of the (2 + 1)D anti-de Sitter, Poincaré, and de Sitter groups is presented through a unified approach in which the curvature of the spacetime (or the cosmological constant) is considered as an explicit parameter. The Drinfel’d-double and the Poisson–Lie structure underlying the -deformation are explicitly given, and the three quan...

Clarke, Patrick

We introduce a duality construction for toric Landau–Ginzburg models, applicable to complete intersections in toric varieties via the sigma model / Landau–Ginzburg model correspondence. This construction is shown to reconstruct those of Batyrev-Borisov, Berglund–Hübsch, Givental, and Hori–Vafa. It can be done in more general situations, and provide...

Colosi, Daniele Dohse, Max

We use the General Boundary Formulation (GBF) of Quantum Field Theory to compute the S-matrix for a general interacting scalar field in a wide class of curved spacetimes. As a by-product we obtain the general expression of the Feynman propagator for the scalar field, defined in the following three types of spacetime regions. First, there are the fa...

Catterall, Simon Joseph, Anosh Wiseman, Toby

We report on the results of numerical simulations of 1+1 dimensional SU(N) Yang-Mills theory with maximal supersymmetry at finite temperature and compactified on a circle. For large N this system is thought to provide a dual description of the decoupling limit of N coincident D1-branes on a circle. It has been proposed that at large N there is a ph...

Bergshoeff, E. Chemissany, W. Ploegh, A. Trigiante, M. Van Riet, T.

We consider the geodesic motion on the symmetric moduli spaces that arise after timelike and spacelike reductions of supergravity theories. The geodesics correspond to timelike respectively spacelike $p$-brane solutions when they are lifted over a $p$-dimensional flat space. In particular, we consider the problem of constructing \emph{the minimal g...

Wall, Aron C.

The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose's original singularity theorem, it implies that spacetime is null geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann--Robertson--Walker cosmologies. If sp...

Azri, Hemza Bounames, A.

We show that the description of the space-time of general relativity as a diagonal four dimensional submanifold immersed in an eight dimensional hypercomplex manifold, in torsionless case, leads to a geometrical origin of the cosmological constant. The cosmological constant appears naturally in the new field equations and its expression is given as...

Chao, Wei

We study the Lifshitz type extension of the standard model (SM) at UV, with dynamical critical exponent z=3. One loop radiative corrections to the Higgs mass in such a model is calculated. Our result shows that, the Hierarchy problem, which has initiated many excellent extension of the minimal SM, can be weakened in the z=3 Lifshitz type quantum fi...

Pandharipande, R. Thomas, R. P.

For a nonsingular projective 3-fold $X$, we define integer invariants virtually enumerating pairs $(C,D)$ where $C\subset X$ is an embedded curve and $D\subset C$ is a divisor. A virtual class is constructed on the associated moduli space by viewing a pair as an object in the derived category of $X$. The resulting invariants are conjecturally equiv...