Distributed MMSE-based uplink receive combining, downlink transmit precoding and optimal power allocation in cell-free m...
status: published
status: published
The Compensation Related Utilization of Neural Circuits Hypothesis (CRUNCH) proposes a framework for understanding task-related brain activity changes as a function of healthy aging and task complexity. Specifically, it affords the following predictions: (i) all adult age groups display more brain activation with increases in task complexity, (ii) ...
status: published
status: published
The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (...
The discovery that human brain connectivity data can be used as a "fingerprint " to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have iden-tified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography...
Published in The Journal of animal ecology
Trophic interactions are often deduced from body size differences, assuming that predators prefer prey smaller than themselves because larger prey are more difficult to subdue. This has mainly been confirmed in aquatic ecosystems, but rarely in terrestrial ecosystems, especially in arthropods. Our goal was to validate whether body size ratios can p...
status: published
Orchids commonly rely on mycorrhizal fungi to obtain the necessary resources for seed germination and growth. Whereas most photosynthetic orchids typically associate with so-called rhizoctonia fungi to complete their life cycle, there is increasing evidence that other fungi may be involved as well and that the mycorrhizal communities associated wit...
Liquid-based devices have emerged as bioinspired neuromorphic applications owing to their high ion-diffusion coefficients, diverse structures, and controllable ion-exchange reactions. By engineering and modifying liquid materials, multifunctional liquid-based computing devices have been developed for next-generation memory and neuromorphic devices....