Modellering en beleidsaanbevelingen ten aanzien van neerslag in Antwerpen – samenvatting en beleidsaanbevelingen
status: published
status: published
status: published
Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an ...
Hoe beïnvloedt de toekomstige klimaatverandering de extreme neerslag boven de stedelijke omgeving? En hoe verhoudt deze klimaatverandering zich ten opzichte van de natuurlijke klimaatschommelingen? Op basis van onderzoek naar deze klimaatvariaties werden recent de Vlaamse buien voor het ontwerp van rioleringen aangepast. Ook werd de invloed van dez...
Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an ...
Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an ...
Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an ...
Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an ...
Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an ...
nrpages: 88 / status: published