Let X be a subvariety of Pn defined over a number field and N(B) be the number of rational points of height at most B on X. There are then general conjectures of Manin on the asymptotic behaviour of N(B) when B goes to infinity. These conjectures can be studied using the Hardy-Littlewood method for non-singular complete intersections of high dimens...

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic intersection number of ¯L and ¯M. We shall explain the definition and the basic properties of this number. Next, we shall see how to extend this construct...

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic intersection number of ¯L and ¯M. We shall explain the definition and the basic properties of this number. Next, we shall see how to extend this construct...

Let X be a subvariety of Pn defined over a number field and N(B) be the number of rational points of height at most B on X. There are then general conjectures of Manin on the asymptotic behaviour of N(B) when B goes to infinity. These conjectures can be studied using the Hardy-Littlewood method for non-singular complete intersections of high dimens...

Let X be a subvariety of Pn defined over a number field and N(B) be the number of rational points of height at most B on X. There are then general conjectures of Manin on the asymptotic behaviour of N(B) when B goes to infinity. These conjectures can be studied using the Hardy-Littlewood method for non-singular complete intersections of high dimens...

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic intersection number of ¯L and ¯M. We shall explain the definition and the basic properties of this number. Next, we shall see how to extend this construct...

Let X be a subvariety of Pn defined over a number field and N(B) be the number of rational points of height at most B on X. There are then general conjectures of Manin on the asymptotic behaviour of N(B) when B goes to infinity. These conjectures can be studied using the Hardy-Littlewood method for non-singular complete intersections of high dimens...