Badaoui, Mohamad

Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graph...

Badaoui, Mohamad

Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graph...

Badaoui, Mohamad

Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graph...

Badaoui, Mohamad

Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graph...

Badaoui, Mohamad

Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graph...

Grimmett, Geoffrey Richard Li, Zhongyang

The connective constant $\mu(G)$ of an infinite transitive graph $G$ is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called 'graph height fun...

Grimmett, Geoffrey Richard Li, Zhongyang

The connective constant $\mu(G)$ of an infinite transitive graph $G$ is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called 'graph height fun...

Grimmett, Geoffrey Li, Z

The first author was supported in part by EPSRC Grant EP/I03372X/1. The second author was supported in part by Simons Collaboration Grant #351813 and NSF grant #1608896.

Grimmett, Geoffrey Richard Li, Z

The first author was supported in part by EPSRC Grant EP/I03372X/1. The second author was supported in part by Simons Collaboration Grant #351813 and NSF grant #1608896.

Grimmett, Geoffrey Li, Z

The first author was supported in part by EPSRC Grant EP/I03372X/1. The second author was supported in part by Simons Collaboration Grant #351813 and NSF grant #1608896.