Copper sulfide has attracted increasing attention as conversion-type cathode material for, especially, solid-state lithium-based batteries. However, the reaction mechanism behind its extraordinary electroactivity is not well understood, and the various explanations given by the scientific community are diverging. Herein, the CuS reaction dynamics a...
Lithium batteries occupy the large-scale electric mobility market raising concerns about the environmental impact of cell production, especially regarding the use of poly(vinylidene difluoride) (teratogenic) and N-methyl-2-pyrrolidone (NMP, harmful). To avoid their use, an aqueous electrode processing route is utilized in which a water-soluble hybr...
Constructing intimate coupling between transition metal and carbon nanomaterials is an effective means to achieve strong immobilization of lithium polysulfides (LiPSs) in the applications of lithium-sulfur (LiS) batteries. Herein, a universal spinning-coordinating strategy of constructing continuous metal-nitrogen-carbon (MNC, M = Co, Fe, Ni) he...
Huang, JGolomb, MJKavanagh, SRTolborg, KGanose, AMWalsh, A
Covalent organic frameworks (COFs) offer a high degree of chemical and structural flexibility. There is a large family of COFs built from 2D sheets that are stacked to form extended crystals. While it has been common to represent the stacking as eclipsed with one repeating layer (“AA”), there is growing evidence that a more diverse range of stackin...
The review paper overviews principles of inkjet printing and ink formulation, subsequently a literature summary on inkjet-printed solid oxide electrochemical reactors printed with 2D and 3D structures, followed by challenges limiting the technique.
The key to realize long-life high energy density lithium batteries is to exploit functional electrolytes capable of stabilizing both high voltage cathode and lithium anode. The emergence of localized high-concentration electrolytes (LHCEs) shows great promise for ameliorating the above-mentioned interfacial issues. In this work, a lithium difluoro(...
The key to realize long-life high energy density lithium batteries is to exploit functional electrolytes capable of stabilizing both high voltage cathode and lithium anode. The emergence of localized high-concentration electrolytes (LHCEs) shows great promise for ameliorating the above-mentioned interfacial issues. In this work, a lithium difluoro(...