Le but de cette thèse est d'utiliser les perceptrons multicouches et l'algorithme de rétropropagation du gradient afin de mettre en oeuvre expérimentalement des commandes neuronales pour la robotique mobile a roues et a pattes. Apres une introduction aux perceptrons multicouches et a la rétropropagation, puis un survol de quelques applications issu...
Cette thèse est une étude de méthodes permettant d'estimer des fonctions valeur avec des réseaux de neurones feedforward dans l'apprentissage par renforcement. Elle traite plus particulièrement de problèmes en temps et en espace continus, tels que les tâches de contrôle moteur. Dans ce travail, l'algorithme TD(lambda) continu est perfectionné pour ...
This thesis is a study of practical methods to estimate value functions with feedforward neural networks in model-based reinforcement learning. Focus is placed on problems in continuous time and space, such as motor-control tasks. In this work, the continuous TD(lambda) algorithm is refined to handle situations with discontinuous states and control...
La contribution principale de ce travail de recherche est la proposition d'un modèle flou avec des fonctions d'appartenance dynamiques à paramètres ajustables en ligne, par un algorithme basé sur l'Apprentissage par Renforcement (AR). L'approche présentée prend en compte la dynamique des variables du système en introduisant, dans les fonctions d'ap...