This article gives a natural decomposition of the suspension of generalized moment-angle complexes or partial product spaces which arise as polyhedral product functors described below. The geometrical decomposition presented here provides structure for the stable homotopy type of these spaces including spaces appearing in work of Goresky–MacPherson...

The notion of Igusa–Todorov algebras is introduced in connection with the (little) finitistic dimension conjecture, and the conjecture is proved for those algebras. Such algebras contain many known classes of algebras over which the finitistic dimension conjecture holds, e.g., algebras with the representation dimension at most 3, algebras with radi...

A morphism f : M → N of left R-modules is a phantom morphism if for any morphism g : A → M , with A finitely presented, the composition fg factors through a projective module. Equivalently, Tor 1 ( X , f ) = 0 for every right R-module X. It is proved that every R-module possesses a phantom cover, whose kernel is pure injective. If mod ̲ - R is the ...

Let $$\mathbb{K}$$ be an algebraically closed field. Consider a finite dimensional monomial relations algebra $$\Lambda = {{\mathbb{K}\Gamma } \mathord{\left/ {\vphantom {{\mathbb{K}\Gamma } I}} \right. \kern-\nulldelimiterspace} I}$$ of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path...

Given a representation-finite algebra B and a subalgebra A of B such that the Jacobson radicals of A and B coincide, we prove that the representation dimension of A is at most three. By a result of Igusa and Todorov, this implies that the finitistic dimension of A is finite.