Lacayo, RobertPesaresi, LucaGroß, JohannFochler, DanielArmand, JasonSalles, LoicSchwingshackl, ChristophAllen, MatthewBrake, Matthew
Motivated by the current demands in high-performance structural analysis, and by a need to better model systems with localized nonlinearities, analysts have developed a number of different approaches for modeling and simulating the dynamics of a bolted-joint structure. However, it is still unclear which approach might be most effective for a given ...
We propose a new way to estimating interparticle contact forces in granular materials, based on the combination of experimental measurements and numerical techniques that take the contact laws respectively from Molecular Dynamics and Non-Smooth Contact Dynamics discrete element methods. Tests are performed in quasi-static conditions on a two-dimens...
Simulation plays a major in the conception, the optimization and the certification of complex systems. Of particular interest here is the calibration of the parameters of computer models from high-dimensional physical observations. When the run times of these computer codes is high, this work focuses on the numerical challenges associated with the ...
We propose a new way to estimating interparticle contact forces in granular materials, based on the combination of experimental measurements and numerical techniques that take the contact laws respectively from Molecular Dynamics and Non-Smooth Contact Dynamics discrete element methods. Tests are performed in quasi-static conditions on a two-dimens...
We propose a new way to estimating interparticle contact forces in granular materials, based on the combination of experimental measurements and numerical techniques that take the contact laws respectively from Molecular Dynamics and Non-Smooth Contact Dynamics discrete element methods. Tests are performed in quasi-static conditions on a two-dimens...
This work is devoted to the numerical modeling of contact problems in the context of multibody dynamics. Non-linearities including large deformation and frictional contact are modeled based on the finite element method. An improved approach by means of a semi-explicit calculation is applied to integrate the equation of motion. The frictional contac...
In the framework of linear dynamic analysis of bladed disks, the intentional mistuning has been identified as a technological way for reducing the sensitivity of the forced response of bladed disks to mistuning induced by the manufacturing tolerances and by the small variabilities of mechanical properties. The role played by the geometrical nonline...