1001 protein kinases redux - towards 2000
Published in Seminars in Cell and Developmental Biology
Published in Seminars in Cell and Developmental Biology
Published in Seminars in cell & developmental biology
Transcription in eukaryotes is regulated by many enzymes that influence the nuclear organization of DNA in chromatin. Several of these enzymes regulate histone modifications. These modifications function as a platform for assembly of protein complexes that influence chromatin structure. Dynamic changes between chromatin states that facilitate or in...
Published in Seminars in cell & developmental biology
Neurons vary greatly in size, shape, and complexity depending on their underlying function. Overall size of neuronal trees affects connectivity, area of influence, and other biophysical properties. Relative distributions of neuronal extent, such as the difference between subtrees at branch points, are also critically related to function and activit...
Published in Seminars in cell & developmental biology
The suppressor of cytokine signalling (SOCS) proteins were, as their name suggests, first described as inhibitors of cytokine signalling. While their actions clearly now extend to other intracellular pathways, they remain key negative regulators of cytokine and growth factor signalling. In this review we focus on the mechanics of SOCS action and th...
Published in Seminars in cell & developmental biology
MicroRNAs (miRNAs) are endogenous small regulatory RNAs, which control gene expression in eukaryotes. In plants they repress mRNA targets containing a highly complementary site, either by cleavage or translational repression. Studies of individual miRNA/target interactions highlight the involvement of the miRNA-based regulations in a broad range of...
Published in Seminars in cell & developmental biology
Bone remodeling is an active process throughout the skeleton. The concept of bone turnover surface has been developed and reported in the peer reviewed literature as the quotient of formation surface/resorption surface and is significantly lower in hip fracture. It is necessary to identify the molecular drivers of these changes in bone turnover. Fa...
Published in Seminars in cell & developmental biology
Cell cycle progression depends on a highly regulated series of events of which transcriptional control plays a major role. In addition, during the S-phase not only DNA but chromatin as a whole needs to be faithfully duplicated. Therefore, both nucleosome dynamics as well as local changes in chromatin organization, including introduction and/or remo...
Published in Seminars in cell & developmental biology
T cell development and differentiation is carefully orchestrated by a series of cytokines. The importance of STAT family proteins in mediating signals by these cytokines is well-known, but new information on the role of STATs in novel aspects of T cell function and T cell subsets continues to accumulate. Recent studies have placed Stat5a/b and Stat...
Published in BMC Cancer
Backgroundp53 is an important tumour suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of ...
Published in Seminars in cell & developmental biology
Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are relatively new areas of research. Results show that while the key players of the molecular network underlying gonad development ap...