Tsolou, Avgi Lydall, David
Published in
DNA repair
Mrc1 (Mediator of Replication Checkpoint 1) is a component of the DNA replication fork machinery and is necessary for checkpoint activation after replication stress. In this study, we addressed the role of Mrc1 at uncapped telomeres. Our experiments show that Mrc1 contributes to the vitality of both cdc13-1 and yku70Delta telomere capping mutants. ...
Grove, Jane I Harris, Lynda Buckman, Carol Lloyd, Robert G
Published in
DNA repair
DNA double-strand breaks threaten the stability of the genome, and yet are induced deliberately during meiosis in order to provoke homologous recombination and generate the crossovers needed to promote faithful chromosome transmission. Crossovers are secured via biased resolution of the double Holliday junction intermediates formed when both ends o...
Mao, Zhiyong Bozzella, Michael Seluanov, Andrei Gorbunova, Vera
Published in
DNA repair
The two major pathways for repair of DNA double-strand breaks (DSBs) are homologous recombination (HR) and nonhomologous end joining (NHEJ). HR leads to accurate repair, while NHEJ is intrinsically mutagenic. To understand human somatic mutation it is essential to know the relationship between these pathways in human cells. Here we provide a compar...
Brooks, P J Cheng, Tsu-Fan Cooper, Lori
Published in
DNA repair
The classic model for neurodegeneration due to mutations in DNA repair genes holds that DNA damage accumulates in the absence of repair, resulting in the death of neurons. This model was originally put forth to explain the dramatic loss of neurons observed in patients with xeroderma pigmentosum neurologic disease, and is likely to be valid for othe...
Zhao, Yang Tarailo-Graovac, Maja O'Neil, Nigel J Rose, Ann M
Published in
DNA repair
The Caenorhabditis elegans ortholog of the Fanconi anemia pathway component J (FANCJ) is DOG-1, which is essential for genome stability. Previous studies have shown that disruption of the dog-1 gene generates small deletions of poly-C/poly-G tracts detectable by PCR and results in a mutator phenotype. In this paper, we describe the isolation and ch...
Chan, Cecilia Y Galli, Alvaro Schiestl, Robert H
Published in
DNA repair
Nonhomologous end joining connects DNA ends in the absence of extended sequence homology and requires removal of mismatched DNA ends and gap-filling synthesis prior to a religation step. Pol4 within the Pol X family is the only polymerase known to be involved in end processing during nonhomologous end joining in yeast. The Saccharomyces cerevisiae ...
Mukherjee, Bipasha Camacho, Cristel Vanessa Tomimatsu, Nozomi Miller, Jack Burma, Sandeep
Published in
DNA repair
Ions of high atomic number and energy (HZE particles) pose a significant cancer risk to astronauts on prolonged space missions. On Earth, similar ions are being used for targeted cancer therapy. The properties of these particles can be drastically altered during passage through spacecraft shielding, therapy beam modulators, or the human body. Here,...
Lord, Christopher J McDonald, Sarah Swift, Sally Turner, Nicholas C Ashworth, Alan
Published in
DNA repair
Synthetic lethality is an attractive strategy for the design of novel therapies for cancer. Using this approach we have previously demonstrated that inhibition of the DNA repair protein, PARP1, is synthetically lethal with deficiency of either of the breast cancer susceptibility proteins, BRCA1 and BRCA2. This observation is most likely explained b...
Malta, Erik Verhagen, Carlo P Moolenaar, Geri F Filippov, Dmitri V van der Marel, Gijs A Goosen, Nora
Published in
DNA repair
UvrB is the main damage recognition protein in bacterial nucleotide excision repair and is capable of recognizing various structurally unrelated types of damage. Previously we have shown that upon binding of Escherichia coli UvrB to damaged DNA two nucleotides become extrahelical: the nucleotide directly 3' to the lesion and its base-pairing partne...
Smith, Abigail J Savery, Nigel J
Published in
DNA repair
Transcription-coupled DNA repair is a mechanism by which bulky DNA lesions that block transcription by RNA polymerase are prioritised for removal by the nucleotide excision repair apparatus. The trigger is thought to be the presence of an irreversibly blocked transcription complex, which is recognised by a transcription-repair coupling factor. Many...