Watson, Andrew J
Published in
Astrobiology
Structurally complex life and intelligence evolved late on Earth; models for the evolution of global temperature suggest that, due to the increasing solar luminosity, the future life span of the (eukaryote) biosphere will be "only" about another billion years, a short time compared to the approximately 4 Ga since life began. A simple stochastic mod...
Liu, Yongding Cockell, Charles S Wang, Gaohong Hu, Chunxiang Chen, Lanzhou De Philippis, Roberto
Published in
Astrobiology
Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts ha...
Lauterbur, Paul C
Published in
Astrobiology
Biology arose as a spontaneous development from the chemistry of the early Earth by Free Energy-driven processes that occurred in common environments involving significant populations of systems. Molecular imprinting to matrices is capable of catalysis of polymer formation and reproduction that, in association with self-assembled membranes, could l...
Blair, Samantha K Magnani, Loris Brand, Jan Wouterloot, Jan G A
Published in
Astrobiology
We present results from an initial survey of the 2(12)-1(11) transition of formaldehyde (H2CO) at 140.8 GHz in giant molecular clouds in the far outer Galaxy (RG >or= 16 kpc). Formaldehyde is a key prebiotic molecule that likely plays an important role in the development of amino acids. Determining the outermost extent of the H2CO distribution can ...
Thomas, Brian C Melott, Adrian L Fields, Brian D Anthony-Twarog, Barbara J
Published in
Astrobiology
Recently, Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of approximately 10(44) Joules. It was proposed that the progenitor may have been a massive evolved star similar to eta Carinae, which resides in our own Galaxy at a distance of about 2.3 kpc. eta Carinae appears ready to detonate. Although it is t...
Smith, Jennifer N Shock, Everett L
Published in
Astrobiology
The common thread of energy release suggests that diverse microbial metabolic processes can be compared through thermodynamic analyses. The resulting energy and power requirements can provide quantitative constraints on habitability. Because previous thermodynamic analyses have focused on the minimum amount of energy needed for the growth of a micr...
Sleep, Norman H Zoback, Mark D
Published in
Astrobiology
The shallow habitable region of cratonal crust deforms with a strain rate on the order of approximately 10(19) s(1). This is rapid enough that small seismic events are expected on one-kilometer spatial scales and one-million-year timescales. Rock faulting has the potential to release batches of biological substrate, such as dissolved H(2), permitti...
Vance, Steve Harnmeijer, Jelte Kimura, Jun Hussmann, Hauke Demartin, Brian Brown, J Michael
Published in
Astrobiology
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variat...
McCollom, Thomas M
Published in
Astrobiology
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of al...
Hoehler, Tori M
Published in
Astrobiology
Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device...