Bugiel, Peter Wędrychowicz, Stanisław Rzepka, Beata
Published in
Advances in Nonlinear Analysis

Existence of fixed point of a Frobenius-Perron type operator P : L1 ⟶ L1 generated by a family {φy}y∈Y of nonsingular Markov maps defined on a σ-finite measure space (I, Σ, m) is studied. Two fairly general conditions are established and it is proved that they imply for any g ∈ G = {f ∈ L1 : f ≥ 0, and ∥f∥ = 1}, the convergence (in the norm of L1) ...

Alsaedi, Ahmed Ahmad, Bashir Kirane, Mokhtar Torebek, Berikbol T.
Published in
Advances in Nonlinear Analysis

This paper is devoted to the study of initial-boundary value problems for time-fractional analogues of Korteweg-de Vries, Benjamin-Bona-Mahony, Burgers, Rosenau, Camassa-Holm, Degasperis-Procesi, Ostrovsky and time-fractional modified Korteweg-de Vries-Burgers equations on a bounded domain. Sufficient conditions for the blowing-up of solutions in f...

Cassani, Daniele Vilasi, Luca Wang, Youjun
Published in
Advances in Nonlinear Analysis

In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptoti...

Wang, Jinliang Cui, Renhao
Published in
Advances in Nonlinear Analysis

This paper concerns with detailed analysis of a reaction-diffusion host-pathogen model with space-dependent parameters in a bounded domain. By considering the fact the mobility of host individuals playing a crucial role in disease transmission, we formulate the model by a system of degenerate reaction-diffusion equations, where host individuals dis...

Martínez, Ángel D. Spector, Daniel
Published in
Advances in Nonlinear Analysis

It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of thi...

Chen, Peng Tang, Xianhua
Published in
Advances in Nonlinear Analysis

In the present paper, we consider the nonlinear periodic systems involving variable exponent driven by p(t)-Laplacian with a locally Lipschitz nonlinearity. Our arguments combine the variational principle for locally Lipschitz functions with the properties of the generalized Lebesgue-Sobolev space. Applying the non-smooth critical point theory, we ...

Zhang, Xiao Liu, Feng
Published in
Advances in Nonlinear Analysis

In this paper we introduce and study the commutators of the local multilinear fractional maximal operators and a vector-valued function b⃗ = (b1, …, bm). Under the condition that each bi belongs to the first order Sobolev spaces, the bounds for the above commutators are established on the first order Sobolev spaces.

Ho, Ky Kim, Yun-Ho
Published in
Advances in Nonlinear Analysis

We obtain a critical imbedding and then, concentration-compactness principles for fractional Sobolev spaces with variable exponents. As an application of these results, we obtain the existence of many solutions for a class of critical nonlocal problems with variable exponents, which is even new for constant exponent case.

Wang, Fuliang Hu, Die Xiang, Mingqi
Published in
Advances in Nonlinear Analysis

The aim of this paper is to study the existence and multiplicity of solutions for a class of fractional Kirchho problems involving Choquard type nonlinearity and singular nonlinearity. Under suitable assumptions, two nonnegative and nontrivial solutions are obtained by using the Nehari manifold approach combined with the Hardy-Littlehood-Sobolev in...

Yang, Zhipeng Zhao, Fukun
Published in
Advances in Nonlinear Analysis

In this paper, we study the singularly perturbed fractional Choquard equation ε2s(−Δ)su+V(x)u=εμ−3(∫R3|u(y)|2μ,s∗+F(u(y))|x−y|μdy)(|u|2μ,s∗−2u+12μ,s∗f(u))inR3, $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{...