Affordable Access

Publisher Website

A worm algorithm for the fully-packed loop model

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
DOI: 10.1016/j.nuclphysb.2009.01.007
Source
arXiv
External links

Abstract

We present a Markov-chain Monte Carlo algorithm of worm type that correctly simulates the fully-packed loop model on the honeycomb lattice, and we prove that it is ergodic and has uniform stationary distribution. The fully-packed loop model on the honeycomb lattice is equivalent to the zero-temperature triangular-lattice antiferromagnetic Ising model, which is fully frustrated and notoriously difficult to simulate. We test this worm algorithm numerically and estimate the dynamic exponent z = 0.515(8). We also measure several static quantities of interest, including loop-length and face-size moments. It appears numerically that the face-size moments are governed by the magnetic dimension for percolation.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments