Affordable Access

Whole-cell clamp study of Xenopus embryonic cholinergic neurons.

Authors
Type
Published Article
Journal
Science in China. Series B, Chemistry, life sciences & earth sciences
Publication Date
Volume
32
Issue
2
Pages
148–154
Identifiers
PMID: 2775458
Source
Medline
License
Unknown

Abstract

Whole-cell clamped myoballs are placed into direct visible contact with the growth cones of isolated neurons in embryonic Xenopus culture to serve as probe of acetylcholine (AcCHo) release in order to determine whether these neurons are cholinergic or not. Using a G omega -seal, whole-cell recording method, the electrophysiological properties of these identified cholinergic neurons are studied. It is found that these embryonic neurons, like adult frog motor neurons, exhibit repetitive firings in a certain embryonic developing stage. A development of repetitive firings is observed simultaneously. Tracing the development of one neuron, we find that the development of repetitive firing is completed at the 48th h after fertilization. Tetrodotoxin (TTX) which blocks Na+ channels can abolish all firings; and tetraethyl ammonium chloride (TEA), the blocker of K+ channels, reverses this development, i.e. it makes the repetitive firings disappear again. These data show that the nature of the development of repetitive firings is the development of K+ channels.

Statistics

Seen <100 times