Affordable Access

Access to the full text

What makes a bad egg? Egg transcriptome reveals dysregulation of translational machinery and novel fertility genes important for fertilization

  • Cheung, Caroline T.1
  • Nguyen, Thao-vi1
  • Le Cam, Aurélie1
  • Patinote, Amélie1
  • Journot, Laurent2, 3
  • Reynes, Christelle2
  • Bobe, Julien1
  • 1 Campus de Beaulieu, INRA, Laboratoire de Physiologie et Génomique des poissons, Rennes cedex, F-35042, France , Rennes cedex (France)
  • 2 IGF, Université de Montpellier, Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France , Montpellier (France)
  • 3 Université de Montpellier, Montpellier GenomiX, BioCampus Montpellier, MGX, CNRS, INSERM, Montpellier, France , Montpellier (France)
Published Article
BMC Genomics
Springer (Biomed Central Ltd.)
Publication Date
Jul 15, 2019
DOI: 10.1186/s12864-019-5930-8
Springer Nature


BackgroundEgg quality can be defined as the egg ability to be fertilized and subsequently develop into a normal embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain including a comprehensive view of what makes a bad egg. Initial development of the embryo relies on maternally-inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore susceptible to be associated with alteration or dysregulation of maternally-inherited transcripts. We performed transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to monitor developmental success and perform transcriptome analysis in parallel. We aimed at drawing a molecular portrait of the egg in order to characterize the relation between egg transcriptome and developmental success and to subsequently identify new candidate genes involved in fertility.ResultsWe identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high developmental success). Statistical modeling using partial least squares regression and genetics algorithm demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The identity and function of differentially expressed genes indicate a major dysregulation of genes of the translational machinery in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and dysregulated in poor quality eggs were further investigated using CRISPR/Cas9 mediated genome editing. Mutants of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt pathway appeared to be dysregulated in the otulina mutant-derived eggs.ConclusionsHere we show that egg transcriptome contains molecular signatures, which can be used to predict developmental success. Our results also indicate that poor egg quality in zebrafish is associated with a dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an important role for fertilization. Together, our observations highlight the diversity of the possible causes of egg quality defects and reveal mechanisms of maternal origin behind the lack of fertilization and early embryonic failures that can occur under normal reproduction conditions.

Report this publication


Seen <100 times