Affordable Access

deepdyve-link
Publisher Website

Weekend Light Shifts Evoke Persistent Drosophila Circadian Neural Network Desynchrony

Authors
  • Nave, Ceazar
  • Roberts, Logan
  • Hwu, Patrick
  • Estrella, Jerson D.
  • Vo, Thanh C.
  • Nguyen, Thanh H.
  • Bui, Tony Thai
  • Rindner, Daniel J.
  • Pervolarakis, Nicholas
  • Shaw, Paul J.
  • Leise, Tanya L.
  • Holmes, Todd C.
Type
Published Article
Journal
Journal of Neuroscience
Publisher
Society for Neuroscience
Publication Date
Jun 16, 2021
Volume
41
Issue
24
Pages
5173–5189
Identifiers
DOI: 10.1523/JNEUROSCI.3074-19.2021
PMID: 33931552
PMCID: PMC8211545
Source
PubMed Central
Keywords
Disciplines
  • Research Articles
  • Systems/Circuits
License
Unknown

Abstract

We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo , WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.

Report this publication

Statistics

Seen <100 times