Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Water-free rare earth-Prussian blue type analogues: synthesis, structure, computational analysis, and magnetic data of {Ln(III)(DMF)(6)Fe(III)(CN)(6)}(infinity) (Ln = rare earths excluding Pm).

Authors
  • 1
  • 1 Department of Chemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
Type
Published Article
Journal
Inorganic Chemistry
1520-510X
Publisher
American Chemical Society
Publication Date
Volume
48
Issue
13
Pages
5725–5735
Identifiers
DOI: 10.1021/ic8022369
PMID: 20507100
Source
Medline
License
Unknown

Abstract

Water-free rare earth(III) hexacyanoferrate(III) complexes, {Ln(DMF)(6)(mu-CN)(2)Fe(CN)(4)}(infinity) (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K](3)Fe(CN)(6) with LnX(3)(DMF)(n) (X = Cl or NO(3)). Anhydrous DMF solutions of LnX(3)(DMF)(n) were prepared at room temperature from LnCl(3) or LnX(3).nH(2)O under a dynamic vacuum. All compounds were characterized by IR, X-ray powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the nu(mu-CN) stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN)(6)](3-) formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.

Statistics

Seen <100 times