Affordable Access

deepdyve-link
Publisher Website

Water-free rare earth-Prussian blue type analogues: synthesis, structure, computational analysis, and magnetic data of {Ln(III)(DMF)(6)Fe(III)(CN)(6)}(infinity) (Ln = rare earths excluding Pm).

Authors
  • Wilson, Duane C1
  • Liu, Shengming
  • Chen, Xuenian
  • Meyers, Edward A
  • Bao, Xiaoguang
  • Prosvirin, Andrey V
  • Dunbar, Kim R
  • Hadad, Christopher M
  • Shore, Sheldon G
  • 1 Department of Chemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
Type
Published Article
Journal
Inorganic Chemistry
Publisher
American Chemical Society
Publication Date
Jul 06, 2009
Volume
48
Issue
13
Pages
5725–5735
Identifiers
DOI: 10.1021/ic8022369
PMID: 20507100
Source
Medline
License
Unknown

Abstract

Water-free rare earth(III) hexacyanoferrate(III) complexes, {Ln(DMF)(6)(mu-CN)(2)Fe(CN)(4)}(infinity) (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K](3)Fe(CN)(6) with LnX(3)(DMF)(n) (X = Cl or NO(3)). Anhydrous DMF solutions of LnX(3)(DMF)(n) were prepared at room temperature from LnCl(3) or LnX(3).nH(2)O under a dynamic vacuum. All compounds were characterized by IR, X-ray powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the nu(mu-CN) stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN)(6)](3-) formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.

Report this publication

Statistics

Seen <100 times