Affordable Access

deepdyve-link
Publisher Website

In vitro real-time magnetic resonance imaging for quantification of thrombosis.

Authors
  • Yang, Ling1
  • Neuberger, Thomas1, 2
  • Manning, Keefe B3, 4
  • 1 Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
  • 2 Huck Institutes of Life Science, The Pennsylvania State University, University Park, PA, USA.
  • 3 Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA. [email protected]
  • 4 Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA. [email protected]
Type
Published Article
Journal
Magnetic Resonance Materials in Physics Biology and Medicine
Publisher
Springer-Verlag
Publication Date
Apr 01, 2021
Volume
34
Issue
2
Pages
285–295
Identifiers
DOI: 10.1007/s10334-020-00872-2
PMID: 32729094
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Thrombosis is a leading cause of failure for cardiovascular devices. While computational simulations are a powerful tool to predict thrombosis and evaluate the risk for medical devices, limited experimental data are available to validate the simulations. The aim of the current study is to provide experimental data of a growing thrombus for device-induced thrombosis. Thrombosis within a backward-facing step (BFS), or sudden expansion was investigated, using bovine and human blood circulated through the BFS model for 30 min, with a constant inflow rate of 0.76 L/min. Real-time three-dimensional flow-compensated magnetic resonance imaging (MRI), supported with Magnevist, a contrast agent improving thrombus delineation, was applied to quantify thrombus deposition and growth within the model. The study showed that the BFS model induced a flow recirculation region, which facilitated thrombosis. By 30 min, in comparison to bovine blood, human blood resulted in smaller thrombus formation, in terms of the length (13.3 ± 0.6 vs. 18.1 ± 1.3 mm), height (2.3 ± 0.1 vs. 2.6 ± 0.04 mm), surface area exposed to blood (0.67 ± 0.03 vs 1.05 ± 0.08 cm2), and volume (0.069 ± 0.004 vs. 0.093 ± 0.007 cm3), with p < 0.01. Normalization of the thrombus measurements, which excluded the flow recirculation effects, suggested that the thrombus sizes increased during the first 15 min and stabilized after 20 min. Blood properties, including viscosity, hematocrit, and platelet count affected thrombosis. For the first time, contrast agent-supported real-time MRI was performed to investigate thrombus deposition and growth within a sudden expansion. This study provides experimental data for device-induced thrombosis, which is valuable for validation of computational thrombosis simulations.

Report this publication

Statistics

Seen <100 times