Affordable Access

In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts.

Authors
  • Roh, S1
  • Shim, H
  • Hwang, W S
  • Yoon, J T
  • 1 Department of Animal Life and Resources, Hankyong National University, Ansung, Korea. [email protected] , (North Korea)
Type
Published Article
Journal
Reproduction, fertility, and development
Publication Date
Jan 01, 2000
Volume
12
Issue
1-2
Pages
1–6
Identifiers
PMID: 11194549
Source
Medline
License
Unknown

Abstract

Nuclear transfer using transfected donor cells provides an efficient new strategy for the production of transgenic farm animals. The present study assessed in vitro development of nuclear transfer embryos using green fluorescent protein (GFP) gene-transfected bovine fetal fibroblasts. In experiment 1, bovine fetal fibroblasts (BFF) were transfected with linearized pEGFP-N1 by electroporation, and the enucleated oocytes were reconstructed by nuclear transfer of transfected cells (BFF-GFP). The rates of blastocyst formation did not differ significantly between BFF and BFF-GFP (18.2% v. 15.6%). In experiment 2, before nuclear transfer, the donor cell stage was synchronized by serum deprivation or forming a confluent monolayer. The rates of cleavage (67.1% v. 71.8%) and blastocyst formation (15.8% v. 15.5%) did not differ between confluent and serum-starved cells after nuclear transfer. In experiment 3, the effects of different passages of donor fibroblast cells on the development of nuclear transfer embryos were investigated. Donor cells from 'early' (at passage 8-16) showed better blastocyst development (18.9%) than those from 'late' (at passage 17-32; 10.5%). In conclusion, this study suggests that transgenic somatic cell nuclei from early passages can be reprogrammed more effectively than those from late passages. In addition, GFP, a non-invasive selection marker, can be used to select transgenic nuclear transfer embryos.

Report this publication

Statistics

Seen <100 times