Affordable Access

Access to the full text

Virtual screening of phytochemical compounds as potential inhibitors against SARS-CoV-2 infection

Authors
  • Kothandan, Ram1
  • Rajan, Cashlin Anna Suveetha Gnana1
  • Arjun, Janamitra1
  • Raj, Rejoe Raymond Michael1
  • Syed, Sowfia1
  • 1 Kumaraguru College of Technology, Coimbatore, India , Coimbatore (India)
Type
Published Article
Journal
Beni-Suef University Journal of Basic and Applied Sciences
Publisher
Springer Berlin Heidelberg
Publication Date
Jan 28, 2021
Volume
10
Issue
1
Identifiers
DOI: 10.1186/s43088-021-00095-x
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundThe present pandemic situation due to coronavirus has led to the search for newer prevention, diagnostic, and treatment methods. The onset of the corona infection in a human results in acute respiratory illness followed by death if not diagnosed and treated with suitable antiretroviral drugs. With the unavailability of the targeted drug treatment, several repurposed drugs are being used for treatment. However, the side-effects of the drugs urges us to move to a search for newer synthetic- or phytochemical-based drugs. The present study investigates the use of various phytochemicals virtually screened from various plant sources in Western Ghats, India, and subsequently molecular docking studies were performed to identify the efficacy of the drug in retroviral infection particularly coronavirus infection.ResultsOut of 57 phytochemicals screened initially based on the structural and physicochemical properties, 39 were effectively used for the docking analysis. Finally, 5 lead compounds with highest hydrophobic interaction and number of H-bonds were screened. Results from the interaction analysis suggest Piperolactam A to be pocketed well with good hydrophobic interaction with the residues in the binding region R1. ADME and toxicity profiling also reveals Piperolactam A with higher LogS values indicating higher permeation and hydrophilicity. Toxicity profiling suggests that the 5 screened compounds to be relatively safe.ConclusionThe in silico methods used in this study suggests that the compound Piperolactam A to be the most effective inhibitor of S-protein from binding to the GRP78 receptor. By blocking the binding of the S-protein to the CS-GRP78 cell surface receptor, they can inhibit the binding of the virus to the host.

Report this publication

Statistics

Seen <100 times