Affordable Access

Velocity profiles in the rat cerebral microvessels measured by optical coherence tomography.

Authors
  • Seki, Junji
  • Satomura, Yasuhiko
  • Ooi, Yasuhiro
  • Yanagida, Toshio
  • Seiyama, Akitoshi
Type
Published Article
Journal
Clinical hemorheology and microcirculation
Publication Date
Jan 01, 2006
Volume
34
Issue
1-2
Pages
233–239
Identifiers
PMID: 16543642
Source
Medline
License
Unknown

Abstract

In order to analyze cerebral hemodynamics and its change following neural activation, the cross-sectional profiles of blood flow velocity in the rat pial microvessels and their temporal changes were measured in vivo using Doppler OCT technique (Doppler optical coherence tomography). The OCT system used in this study has axial resolution of 11 microm and lateral resolution about 14 microm in the cortical tissue. The velocity distributions along the vertical diameter of pial microvessels in a cranial window of the rats were measured at short time intervals by scanning the OCT sampling point repeatedly. The velocity profiles obtained in the pial arterioles were parabolic at any phase, although the centerline velocity pulsated following heart beats with amplitude as large as 50% of the temporal mean velocity. It indicates that the blood flow in the pial microvessels is a quasi-steady laminar flow, which is consistent with the flow expected for the case of a small Reynolds number and a small frequency parameter. The stimulus-induced increase in velocity pulsation was much larger than the increase in the mean velocity, which places a restriction on the mechanism of regulating the regional cerebral blood flow and blood volume. The results obtained in this study showed that the Doppler OCT has a potential of measuring velocity profiles and their temporal changes with both high temporal and spatial resolutions for the pial microvessels with diameter up to 200 microm.

Report this publication

Statistics

Seen <100 times