Affordable Access

[Vasopressinergic neurons in rats during ontogenesis: reaction to salt-loading and its modulation by noradrenergic afferents].

Authors
Type
Published Article
Journal
Rossiĭskii fiziologicheskiĭ zhurnal imeni I.M. Sechenova / Rossiĭskaia akademiia nauk
Publication Date
Volume
93
Issue
8
Pages
827–836
Identifiers
PMID: 17926913
Source
Medline
License
Unknown

Abstract

Salt-loading in adult mammals stimulates vasopressin secretion by vasopressinergic neurons of the supraoptic nucleus that is under control by a number of hormones and neurotransmitters including noradrenalin. This study was aimed to determine at what period of ontogenesis the vasopressinergic neurons begin to respond to salt-loading and when the noradrenergic control of this process is switched on. Rats on the 21st embryonic day (E), the 3rd postnatal day (P) and P13 were salt-loaded, sometimes under simultaneous treatment with prasozin, an inhibitor of al -adrenoreceptors. Thereafter, the hypothalamic nuclei of the animals were processed for immunocytochemistry and in situ hybridization. Salt-loading provoked increased synthesis of vasopressin mRNA and, most probably, vasopressin itself in rats in all studied age groups. Under salt-loading, the intraneuronal content of vasopressin increased significantly at E21 and P3, whereas it did not change at P13. No change in the intracellular contents of vasopressin mRNA and vasopressin was observed in foetuses following salt-loading and treatment with prasozin though the same treatment provoked an increase of both parameters at P3. These data show that noradrenalin provides an inhibitory control of vasopressin expression at least since P3. Thus, vasopressinergic neurons begin to respond to salt-loading at the since P3. Thus, life by the increased expression of vasopressin that is postnatally under the inhibitory control by noradrenalin.

Statistics

Seen <100 times