Affordable Access

deepdyve-link
Publisher Website

Variational formulation of ideal fluid flows according to gauge principle

Authors
  • Kambe, Tsutomu
Type
Preprint
Publication Date
Apr 19, 2008
Submission Date
Sep 19, 2007
Identifiers
DOI: 10.1016/j.fluiddyn.2007.12.002
Source
arXiv
License
Unknown
External links

Abstract

On the basis of the gauge principle of field theory, a new variational formulation is presented for flows of an ideal fluid. The fluid is defined thermodynamically by mass density and entropy density, and its flow fields are characterized by symmetries of translation and rotation. The rotational transformations are regarded as gauge transformations as well as the translational ones. In addition to the Lagrangians representing the translation symmetry, a structure of rotation symmetry is equipped with a Lagrangian $\Lambda_A$ including the vorticity and a vector potential bilinearly. Euler's equation of motion is derived from variations according to the action principle. In addition, the equations of continuity and entropy are derived from the variations. Equations of conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate $\ba$. Without $\Lambda_A$, the action principle results in the Clebsch solution with vanishing helicity. The Lagrangian $\Lambda_A$ yields non-vanishing vorticity and provides a source term of non-vanishing helicity. The vorticity equation is derived as an equation of the gauge field, and the $\Lambda_A$ characterizes topology of the field. The present formulation is comprehensive and provides a consistent basis for a unique transformation between the Lagrangian $\ba$ space and the Eulerian $\bx$ space. In contrast, with translation symmetry alone, there is an arbitrariness in the ransformation between these spaces.

Report this publication

Statistics

Seen <100 times