Affordable Access

Access to the full text

Variable-order reference-free variant discovery with the Burrows-Wheeler Transform

Authors
  • Prezza, Nicola1
  • Pisanti, Nadia1
  • Sciortino, Marinella2
  • Rosone, Giovanna1
  • 1 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, Pisa, Italy , Pisa (Italy)
  • 2 Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi, 34, Palermo, Italy , Palermo (Italy)
Type
Published Article
Journal
BMC Bioinformatics
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Sep 16, 2020
Volume
21
Issue
Suppl 8
Identifiers
DOI: 10.1186/s12859-020-03586-3
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundIn [Prezza et al., AMB 2019], a new reference-free and alignment-free framework for the detection of SNPs was suggested and tested. The framework, based on the Burrows-Wheeler Transform (BWT), significantly improves sensitivity and precision of previous de Bruijn graphs based tools by overcoming several of their limitations, namely: (i) the need to establish a fixed value, usually small, for the order k, (ii) the loss of important information such as k-mer coverage and adjacency of k-mers within the same read, and (iii) bad performance in repeated regions longer than k bases. The preliminary tool, however, was able to identify only SNPs and it was too slow and memory consuming due to the use of additional heavy data structures (namely, the Suffix and LCP arrays), besides the BWT.ResultsIn this paper, we introduce a new algorithm and the corresponding tool ebwt2InDel that (i) extend the framework of [Prezza et al., AMB 2019] to detect also INDELs, and (ii) implements recent algorithmic findings that allow to perform the whole analysis using just the BWT, thus reducing the working space by one order of magnitude and allowing the analysis of full genomes. Finally, we describe a simple strategy for effectively parallelizing our tool for SNP detection only. On a 24-cores machine, the parallel version of our tool is one order of magnitude faster than the sequential one. The tool ebwt2InDel is available at github.com/nicolaprezza/ebwt2InDel.ConclusionsResults on a synthetic dataset covered at 30x (Human chromosome 1) show that our tool is indeed able to find up to 83% of the SNPs and 72% of the existing INDELs. These percentages considerably improve the 71% of SNPs and 51% of INDELs found by the state-of-the art tool based on de Bruijn graphs. We furthermore report results on larger (real) Human whole-genome sequencing experiments. Also in these cases, our tool exhibits a much higher sensitivity than the state-of-the art tool.

Report this publication

Statistics

Seen <100 times