Affordable Access

Variable H+/substrate stoicheiometries in Rhodotorula gracilis are caused by a pH-dependent protonation of the carrier(s).

  • R Hauer
  • M Höfer
Publication Date
Nov 15, 1982


Two carrier-mediated systems transport sugars in the yeast Rhodotorula gracilis depending on the pH. One system, with higher affinity for sugars, catalyses a symport of protons with sugar, whereas the other system, having lower affinity, is independent of protons. This was shown in three different ways. (1) At low pH, where only the high-affinity system works, a H+/sugar stoicheiometry of 1 was found. An increase of the pH and of the sugar concentration, which allowed the low-affinity system to operate, brought about a drop of the stoicheiometry to values below 1. (2) During H+ symport the influx of positive charge was electrically compensated by an equivalent efflux of K+ from the cells. At high pH and high sugar concentrations this stoicheiometry of K+ and sugar decreased concomitant with the H+/sugar stoicheiometry. (3) At pH 7.5 both transport systems were operating, as shown by biphasic saturation kinetics. Under these conditions only the high-affinity transport was found to be electrogenic. These results agree with the theory of an electrogenic H+/sugar symport where changes in the affinity for substrate are brought about by reversible protonation and deprotonation of the carrier.


Seen <100 times