Affordable Access

Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems

Authors
  • Saco, Patricia M.
  • Rodríguez, José F.
  • Moreno-de las Heras, Mariano
  • Keesstra, Saskia
  • Azadi, Samira
  • Sandi, Steven
  • Baartman, Jantiene
  • Rodrigo-Comino, Jesús
  • Rossi, María Julieta
Publication Date
Jan 01, 2020
Source
Wageningen University and Researchcenter Publications
Keywords
Language
English
License
Unknown
External links

Abstract

<p>In arid and semi-arid ecosystems, shortage of water can trigger changes in landscapes’ structures and function leading to degradation and desertification. Hydrological connectivity is a useful framework for understanding water redistribution and scaling issues associated with runoff and sediment production, since human and/or natural disturbances alter surface water availability and pathways increasing/decreasing connectivity. In this paper, we illustrate the use of the connectivity framework for several examples of dryland systems that are analysed at a variety of spatial and temporal scales. In doing so, we draw particular attention to the analysis of coevolution of system structures and function, and how they may drive threshold behaviour leading to desertification and degradation. We first analyse the case of semi-arid rangelands, where feedbacks between the decline in vegetation density and landscape erosion reinforces degradation processes driven by changes in connectivity until a threshold is crossed above which the return to a functional system is unlikely. We then focus on semi-arid wetlands, where decreases in water volumes promote terrestrial vegetation encroachment that changes drainage conditions and connectivity, potentially reinforcing redistribution of flow paths to other wetland areas. The analysis of dryland wetlands is based on a novel hydrologic connectivity index derived using inundation requirements for wetland vegetation associations. The examples presented highlight the need to incorporate a coevolutionary framework for the analysis of changing connectivity patterns and the emergence of thresholds in arid and semi-arid systems.</p>

Report this publication

Statistics

Seen <100 times