Affordable Access

The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review

Authors
  • Hung, Kuofeng;
  • Montalvao, Carla;
  • Tanaka, Ray;
  • Kawai, Taisuke;
  • Bornstein, Michael M; 88155;
Publication Date
Jan 01, 2020
Source
Lirias
Keywords
License
Unknown
External links

Abstract

OBJECTIVES: To investigate the current clinical applications and diagnostic performance of artificial intelligence (AI) in dental and maxillofacial radiology (DMFR). METHODS: Studies using applications related to DMFR to develop or implement AI models were sought by searching five electronic databases and four selected core journals in the field of DMFR. The customized assessment criteria based on QUADAS-2 were adapted for quality analysis of the studies included. RESULTS: The initial electronic search yielded 1862 titles, and 50 studies were eventually included. Most studies focused on AI applications for an automated localization of cephalometric landmarks, diagnosis of osteoporosis, classification/segmentation of maxillofacial cysts and/or tumors, and identification of periodontitis/periapical disease. The performance of AI models varies among different algorithms. CONCLUSION: The AI models proposed in the studies included exhibited wide clinical applications in DMFR. Nevertheless, it is still necessary to further verify the reliability and applicability of the AI models prior to transferring these models into clinical practice. / status: published

Report this publication

Statistics

Seen <100 times