Affordable Access

Uroporphyria produced in mice by iron and 5-aminolaevulinic acid does not occur in Cyp1a2(-/-) null mutant mice.

Authors
Type
Published Article
Journal
The Biochemical journal
Publication Date
Volume
330 ( Pt 1)
Pages
149–153
Identifiers
PMID: 9461503
Source
Medline
License
Unknown

Abstract

In the present study we have investigated the putative requirement for the cytochrome P-450 isoform CYP1A2 in murine uroporphyria, by comparing Cyp1a2(-/-) knockout mice with Cyp1a2(+/+) wild-type mice. Uroporphyria was produced by injecting animals with iron-dextran and giving the porphyrin precursor 5-aminolaevulinic acid in the drinking water. Some animals also received 3-methylcholanthrene (MC) to induce hepatic CYP1A2. In both protocols, uroporphyria was elicited by these treatments in the Cyp1a2(+/+) wild-type mice, but not in the null mutant mice. Uroporphyrinogen oxidation activity in hepatic microsomes from untreated Cyp1a2(+/+) mice was 2.5-fold higher than in Cyp1a2(-/-) mice. Treatment with MC increased hepatic CYP1A1 in both mouse lines and hepatic CYP1A2 only in the Cyp1a2(+/+) line, as determined by Western immunoblotting. MC increased hepatic ethoxy- and methoxy-resorufin O-dealkylase activities in both mouse lines, but increased uroporphyrinogen oxidation activity in the Cyp1a2(+/+) wild-type mice only. These results indicate the absolute requirement for hepatic CYP1A2 in causing experimental uroporphyria under the conditions used.

Statistics

Seen <100 times