Affordable Access

deepdyve-link
Publisher Website

Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12

Authors
  • Bergeau, Dorian
  • Mazurier, Sylvie
  • Barbey, Corinne
  • Mérieau, Annabelle
  • Chane, Andrea
  • Goux, Didier
  • Bernard, Sophie
  • Driouich, Azeddine
  • Lemanceau, Philippe
  • Vicré, Maïté
  • Latour, Xavier
Publication Date
Aug 28, 2019
Identifiers
DOI: 10.1371/journal.pone.0221025
OAI: oai:HAL:hal-02276826v1
Source
HAL
Keywords
Language
English
License
Unknown
External links

Abstract

Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacterium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizo-bacteria that promote plant growth by direct stimulation, by preventing the deleterious effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-competent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular mycorrhization. This strain has been studied in detail, but no visual evidence has ever been obtained for extracellular structures potentially involved in its remarkable fitness and biocon-trol performances. On transmission electron microscopy of negatively stained C7R12 cells, we observed the following appendages: multiple polar flagella, an inducible putative type three secretion system typical of phytopathogenic Pseudomonas syringae strains and densely bundled fimbria-like appendages forming a broad fractal-like dendritic network around single cells and microcolonies. The deployment of one or other of these elements on the bacterial surface depends on the composition and affinity for the water of the microenvi-ronment. The existence, within this single strain, of machineries known to be involved in motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may partly explain the strong interactions of strain C7R12 with plants and associated microflora in addition to the type three secretion system previously shown to be implied in mycorrhizae promotion.

Report this publication

Statistics

Seen <100 times