Affordable Access

Access to the full text

Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze)

Authors
  • Seth, Romit1
  • Maritim, Tony Kipkoech1, 2, 3
  • Parmar, Rajni1
  • Sharma, Ram Kumar1, 2
  • 1 CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India , Palampur (India)
  • 2 Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India , Ghaziabad (India)
  • 3 Tea breeding and genetic improvement division, KALRO—Tea Research Institute, Kericho, 20200, Kenya , Kericho (Kenya)
Type
Published Article
Journal
Horticulture Research
Publisher
Nature Publishing Group UK
Publication Date
May 01, 2021
Volume
8
Issue
1
Identifiers
DOI: 10.1038/s41438-021-00532-z
Source
Springer Nature
License
Green

Abstract

The most daunting issue of global climate change is the deleterious impact of extreme temperatures on tea productivity and quality, which has resulted in a quest among researchers and growers. The current study aims to unravel molecular programming underpinning thermotolerance by characterizing heat tolerance and sensitivity response in 20 tea cultivars. The significantly higher negative influence of heat stress was recorded in a sensitive cultivar with reduced water retention (47%), chlorophyll content (33.79%), oxidation potential (32.48%), and increase in membrane damage (76.4%). Transcriptional profiling of most tolerant and sensitive cultivars identified 78 differentially expressed unigenes with chaperon domains, including low and high molecular weight heat shock protein (HSP) and heat shock transcription factors (HSFs) involved in heat shock response (HSR). Further, predicted transcriptional interactome network revealed their key role in thermotolerance via well-co-ordinated transcriptional regulation of aquaporins, starch metabolism, chlorophyll biosynthesis, calcium, and ethylene mediated plant signaling system. The study identified the key role of HSPs (CsHSP90) in regulating HSR in tea, wherein, structure-based molecular docking revealed the inhibitory role of geldanamycin (GDA) on CsHSP90 by blocking ATP binding site at N-terminal domain of predicted structure. Subsequently, GDA mediated leaf disc inhibitor assay further affirmed enhanced HSR with higher expression of CsHSP17.6, CsHSP70, HSP101, and CsHSFA2 genes in tea. Through the current study, efforts were made to extrapolate a deeper understanding of chaperons mediated regulation of HSR attributing thermotolerance in tea.

Report this publication

Statistics

Seen <100 times