Affordable Access

Publisher Website

Ultra faint dwarfs: probing early cosmic star formation

Authors
Type
Preprint
Publication Date
Submission Date
Identifiers
DOI: 10.1111/j.1745-3933.2009.00627.x
Source
arXiv
External links

Abstract

We investigate the nature of the newly discovered Ultra Faint dwarf spheroidal galaxies (UF dSphs) in a general cosmological context simultaneously accounting for various ``classical`` dSphs and Milky Way properties including their Metallicity Distribution Function (MDF). To this aim we extend the merger tree approach previously developed to include the presence of star-forming minihaloes, and an heuristic prescription for radiative feedback. The model successfully reproduces both the observed [Fe/H]-Luminosity relation and the mean MDF of UFs. In this picture UFs are the oldest, most dark matter-dominated (M/L > 100) dSphs with a total mass M= 10^{7-8}Msun; they are leftovers of H_2-cooling minihaloes formed at z > 8.5, i.e. before reionization. Their MDF is broader (because of a more prolonged SF) and shifted towards lower [Fe/H] (as a result of a lower gas metallicity at the time of formation) than that of classical dSphs. These systems are very ineffectively star-forming, turning into stars by z=0 only <3% of the potentially available baryons. We provide a useful fit for the star formation efficiency of dSphs.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments