Affordable Access

Two K(+)-selective conductances in single proximal tubule cells isolated from frog kidney are regulated by ATP.

Authors
Publication Date
Source
PMC
Keywords
License
Unknown

Abstract

1. The whole-cell and single channel patch clamp techniques were used to identify K(+)-selective conductances in single proximal tubule cells isolated from frog kidney and to examine their ATP sensitivity. Whole-cell currents were inhibited by the K+ channel inhibitors Ba2+ and quinidine in a dose-dependent manner. Addition of Ba2+ alone, quinidine alone, or both inhibitors together revealed two separate conductances, one of which was blocked by both Ba2+ and quinidine (GBa)1, the other being sensitive to quinidine alone (Gquin). 2. With Na(+)-containing Ringer solution in the bath and K(+)-containing Ringer solution in the pipette, both currents were selective for K+ over Na+. The K+ : Na+ selectivity ratio of GBa was around 50:1, while that of Gquin was 4:1. In symmetrical KCl solutions GBa showed inward rectification, while Gquin demonstrated outward rectification. 3. In the absence of pipette ATP, both GBa and Gquin ran down over 10 min. However, when 2 mM ATP was included in the pipette GBa increased, while Gquin remained unchanged. 4. Single channel studies demonstrated that a basolateral K+ channel shared several of the characteristics of GBa. It was inhibited by both Ba2+ and quinidine, underwent run-down in excised patches in the absence of ATP, and was activated by ATP. 5. We conclude that cells of the frog proximal tubule contain at least two distinct K(+)-selective conductances, both of which are regulated by ATP, and which may be involved in pump-leak coupling.

Statistics

Seen <100 times