Affordable Access

Two-Dimensional Knots and Representations of Hyperbolic Groups

Authors
  • Apanasov, Boris
Type
Preprint
Publication Date
Feb 26, 2001
Submission Date
Feb 26, 2001
Identifiers
arXiv ID: math/0102202
Source
arXiv
License
Unknown
External links

Abstract

We describe relations between hyperbolic geometry and codimension two knots or, more exactly, between varieties of conjugacy classes of discrete faithful representations of the fundamental groups of hyperbolic n-manifolds M into $\operatorname{SO}^{\circ} (n+2,1)$ and (n-1)-dimensional knots in the (n+1)-sphere. This approach allows us to discover a phenomenon of non-connectedness of these varieties for closed n-manifolds M, $n\geq 3$, with large enough number of disjoint totally geodesic surfaces, to construct quasisymmetric infinitely compounded "Julia" knots $K\subset S^{n+1}$ which are everywhere wild and have recurrent $\pi_1(M)$-action, and to study circle and 2-plane bundles (with geometric structures) over closed hyperbolic n-manifolds.

Report this publication

Statistics

Seen <100 times