Affordable Access

Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis

Authors
  • Xue, Yudong
  • Fishman, Zachary S.
  • Rohr, Jason A.
  • Pan, Zhenhua
  • Wang, Yunting
  • Zhang, Chunhui
  • Zheng, Shili
  • Zhang, Yi
  • Hu, Shu
Publication Date
Nov 28, 2018
Source
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
Keywords
License
Unknown
External links

Abstract

The development of low overpotential, non-precious metal oxide electrocatalysts is important for sustainable water oxidation using renewable energy. Here we report the fabrication of nano-interfaces between MnOx nanoscale islands and NiFe layered double hydroxide (LDH) nanosheets, which were chosen as baseline electrocatalysts for OER activity tuning. The MnOx nano-islands were grown on the surfaces of NiFe-LDH nanosheets by atomic layer deposition (ALD). Morphological and structural characterization indicated that the MnOx formed flat nanoscale islands which uniformly covered the surfaces of NiFe-LDH nanosheets, giving rise to a large density of threedimensional nano-interfaces at the NiFe-LDH/MnOx/electrolyte multi-phase boundaries. We showed by X-ray spectroscopic characterization that these nano-interfaces induced electronic interactions between NiFe-LDH nanosheets and MnOx nano-islands. Through such modifications, the Fermi level of the original NiFe-LDHwas lowered by donating electrons to the MnOx nano-islands, dramatically boosting the OER performance of these electron-deficient NiFe-LDH catalysts. Using only 10 cycles of ALD MnOx, the MnOx/NiFe-LDH nanocomposites exhibited remarkable and enhanced electrocatalytic activity with an overpotential of 174 mV at 10 mA cm(-2). This work demonstrates a promising pathway for tuning transition metal electrocatalysts via a generic ALD surface modification technique.

Report this publication

Statistics

Seen <100 times