Affordable Access

Triiodothyronine-induced changes in proton efflux from rat skeletal muscle in vivo.

Authors
  • Thompson, C H
  • Kemp, G J
  • Radda, G K
Type
Published Article
Journal
European journal of endocrinology / European Federation of Endocrine Societies
Publication Date
Aug 01, 1995
Volume
133
Issue
2
Pages
260–264
Identifiers
PMID: 7655654
Source
Medline
License
Unknown

Abstract

Hyperthyroidism is associated with muscle weakness, abnormal aerobic metabolism and increased lactate production. Muscle cell acidification during exercise is reduced, suggesting abnormally increased proton efflux. Using 31P magnetic resonance spectroscopy to measure cell pH and phosphocreatine concentration, we quantified effective proton efflux from rat leg muscle in vivo following 10-Hz sciatic nerve stimulation in seven rats injected with triiodothyronine (T3) for 5 days and in 11 controls. Proton efflux during recovery was sigmoidally pH-dependent in both groups but the initial proton efflux rate did not differ (16 +/- 3 mmol.kg-1.min-1 in treated animals vs 15 +/- mmol.kg-1.min.-1 in controls), despite significantly smaller pH change from basal in treated animals (0.60 +/- 0.04 vs 0.78 +/- 0.03 in controls, p = 0.002). The pH dependence of proton efflux can be characterized by an apparent Km, defined as the pH below basal at which proton efflux rate falls to half its start-of-recovery value. This Km was smaller in the T3-treated group (0.44 +/- 0.04 vs 0.59 +/- 0.03 in controls, p = 0.02). This suggests an increased affinity for protons by cell membrane proton transport processes such as the sodium-proton antiporter and may explain some of the metabolic changes seen clinically in hyperthyroid skeletal muscle.

Report this publication

Statistics

Seen <100 times