Affordable Access

Access to the full text

Transport in Fermi Liquids Confined by Rough Walls

Authors
  • Sharma, Priya1
  • 1 Jawaharlal Nehru Centre for Advanced Scientific Research, Theoretical Sciences Unit, Jakkur, Bangalore, 560064, India , Bangalore (India)
Type
Published Article
Journal
Journal of Low Temperature Physics
Publisher
Springer US
Publication Date
Apr 08, 2014
Volume
177
Issue
1-2
Pages
3–7
Identifiers
DOI: 10.1007/s10909-014-1180-y
Source
Springer Nature
Keywords
License
Yellow

Abstract

I present theoretical calculations of the thermal conductivity of Fermi liquid 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}He confined to a slab of thickness of order ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}100 nm. The effect of the roughness of the confining surfaces is included directly in terms of the surface roughness power spectrum which may be determined experimentally. Transport at low temperatures is limited by scattering off rough surfaces and evolves into the known high-temperature limit in bulk through an anomalous regime in which both inelastic quasiparticle scattering and elastic scattering off the rough surface coexist. I show preliminary calculations for the coefficients of thermal conductivity. These studies are applicable in the context of electrical transport in metal nanowires as well as experiments that probe the superfluid phase diagram of liquid 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}He in a slab geometry.

Report this publication

Statistics

Seen <100 times