Transition metal-free direct hydrogenation of esters via a frustrated Lewis pair
- Authors
- Publication Date
- Jun 16, 2021
- Source
- UPCommons. Portal del coneixement obert de la UPC
- Keywords
- License
- Unknown
Abstract
‘Frustrated Lewis pairs’ (FLPs) continue to exhibit unique reactivity for the reduction of organic substrates, yet to date the catalytic hydrogenation of an ester functionality has not been demonstrated. Here we report that iPr3SnNTf2 (1-NTf2; Tf = SO2CF3) is a more potent Lewis acid than the previously studied iPr3SnOTf; in an FLP with 2,4,6-collidine/2,6-lutidine (col/lut) this translates to faster H2 activation and the catalytic hydrogenolysis of an ester bond by a by a main-group compound, furnishing alcohol and ether (minor) products. The reaction outcome is sensitive to the steric and electronic properties of the substrate; CF3CO2Et and simple formates (HCO2Me, HCO2Et) are catalytically reduced, whereas related esters CF3CO2nBu and CH3CO2Et show only stoichiometric reactivity. A computational case study on the hydrogenation of CF3CO2Et and CH3CO2Et reveals that both share a common mechanistic pathway, however, key differences in the energies of a Sn-acetal intermediate and transition states emerge, favoring CF3CO2Et reduction. The alcohol products reversibly inhibit 1-NTf2/lut via formation of resting-state species 1-OR/[1·(1-OR)]+[NTf2]–, however the extra energy required to regenerate 1-NTf2/lut exacerbates the unfavorable reduction energy profile for CH3CO2Et, ultimately preventing turnover. These findings will assist the design of future main-group catalysts for ester hydrogenation, with improved performance.