Affordable Access

Transformation of Paramecium by microinjection of a cloned serotype gene.

  • Godiska, R
  • Aufderheide, K J
  • Gilley, D
  • Hendrie, P
  • Fitzwater, T
  • Preer, L B
  • Polisky, B
  • Preer, J R Jr
Published Article
Proceedings of the National Academy of Sciences of the United States of America
Publication Date
Nov 01, 1987
PMID: 2823267


Paramecia of a given serotype express only one of several possible surface proteins called immobilization antigens (i-antigens). A 16-kilobase plasmid containing the gene for immobilization antigen A from Paramecium tetraurelia, stock 51, was injected into the macronucleus of deletion mutant d12, which lacks that gene. Approximately 40% of the injected cells acquired the ability to express serotype A at 34 degrees C. Expression appeared to be regulated normally. The transformed cells, like wild type, could be switched to serotype B by antiserum treatment and culture at 19 degrees C; on transfer to 34 degrees C, they switched back to serotype A expression. Many of the lines retained the ability to express serotype A until autogamy, when the old macronucleus is replaced by a new one derived from the micronucleus. DNA from transformants contained the injected plasmid sequences, which were replicated within the paramecia. No evidence for integration was obtained. The majority of replicated plasmid DNA comigrated with a linearized form of the input plasmid. Nonetheless, the pattern of restriction fragments generated by transformant DNA and that generated by input plasmid DNA are identical and consistent with a circular rather than a linear map. These conflicting observations can be reconciled by assuming that a mixture of different linear fragments is present in the transformants, each derived from the circular plasmid by breakage at a different point. Copy-number determinations suggest the presence of 45,000-135,000 copies of the injected plasmid per transformed cell. These results suggest that the injected DNA contains information sufficient for both controlled expression and autonomous replication in Paramecium.


Seen <100 times