Affordable Access

deepdyve-link
Publisher Website

Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy.

Authors
Type
Published Article
Journal
Journal of Biological Chemistry
Publisher
American Society for Biochemistry and Molecular Biology
Volume
290
Issue
25
Identifiers
DOI: 10.1074/jbc.M115.658765
Source
Hunter Lab
License
Unknown

Abstract

The DAXX transcriptional repressor was originally associated with apoptotic cell death. However, recent evidence that DAXX represses several tumor suppressor genes, including the DAPK1 and DAPK3 protein kinases, and is up-regulated in many cancers argues that a pro-survival role may predominate in a cancer context. Here, we report that DAXX has potent growth-enhancing effects on primary prostatic malignancy through inhibition of autophagy. Through stable gene knockdown and mouse subcutaneous xenograft studies, we demonstrate that DAXX promotes tumorigenicity of human ALVA-31 and PC3 prostate cancer (PCa) cells in vivo. Importantly, DAXX represses expression of essential autophagy modulators DAPK3 and ULK1 in vivo, revealing autophagy suppression as a mechanism through which DAXX promotes PCa tumorigenicity. Furthermore, DAXX knockdown increases autophagic flux in cultured PCa cells. Finally, interrogation of the Oncomine(TM) database suggests that DAXX overexpression is associated with malignant transformation in several human cancers, including prostate and pancreatic cancers. Thus, DAXX may represent a new cancer biomarker for the detection of aggressive disease, whose tissue-specific down-regulation can serve as an improved therapeutic modality. Our results establish DAXX as a pro-survival protein in PCa and reveal that, in the early stages of tumorigenesis, autophagy suppresses prostate tumor formation.

Report this publication

Statistics

Seen <100 times