Affordable Access

Transcription- and translation-dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation.

Authors
Type
Published Article
Journal
Molecular microbiology
Publication Date
Volume
32
Issue
6
Pages
1173–1182
Identifiers
PMID: 10383759
Source
Medline
License
Unknown

Abstract

Cell cycle events have been proposed to be triggered by the formation of membrane domains in the process of coupled transcription, translation and insertion ('transertion') of nascent membrane and exported proteins. Disruption of domain structure should lead to changes in membrane dynamics. Membrane viscosity of Escherichia coli and Bacillus subtilis decreased after inhibition of protein synthesis by chloramphenicol or puromycin, or of RNA initiation by rifampicin, but not after inhibition of RNA elongation by streptolydigin or amino acid starvation of a stringent strain. The decrease caused by inhibitors of protein synthesis was prevented by streptolydigin if added simultaneously, but was not reversed if added later. The drug-induced decrease in membrane viscosity is energy dependent: it did not happen in KCN-treated cells. All treatments decreasing membrane viscosity also induced nucleoid compaction and fusion. Inhibition of macromolecular synthesis without membrane perturbation caused nucleoids to expand. Changes in membrane dynamics were also displayed during a nutritional shift-down transition that causes imbalance in macromolecular syntheses. The results are consistent with the transertion model, predicting dissipation of membrane domains by termination of protein synthesis or detachment of polysomes from DNA; domain structure is conserved if the transertion process is 'frozen'.

Statistics

Seen <100 times