Affordable Access

Tracking the Pixels: Detecting Web Trackers via Analyzing Invisible Pixels

Authors
  • Fouad, Imane
  • Bielova, Nataliia
  • Legout, Arnaud
  • Sarafijanovic-Djukic, Natasa
Publication Date
Dec 06, 2018
Source
HAL-UPMC
Keywords
Language
English
License
Unknown
External links

Abstract

Web tracking has been extensively studied over the last decade. To detect tracking, most of the research studies and user tools rely on consumer protection lists. However, there was always a suspicion that lists miss unknown trackers. In this paper, we propose an alternative solution to detect trackers by analyzing behavior of invisible pixels that are perfect suspects for tracking. By crawling 829,349 webpages, we detect that third-party invisible pixels are widely deployed: they are present on more than 83% of domains and constitute 37.22% of all third-party images. We then propose a fine-grained classification of tracking based on the analysis of invisible pixels and use this classification to detect new categories of tracking and uncover new collaborations between domains on the full dataset of 34,952,217 third-party requests. We demonstrate that two blocking strategies – based on EasyList&EasyPrivacy and on Disconnect lists – each miss 22% of the trackers that we detect. Moreover, we find that if we combine both strategies, 238,439 requests (11%) originated from 7,773 domains that still track users on 5,098 websites.

Report this publication

Statistics

Seen <100 times