Affordable Access

deepdyve-link
Publisher Website

TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2.

Authors
Type
Published Article
Journal
Cancer Research
Publisher
American Association for Cancer Research
Volume
69
Issue
5
Pages
1821–1827
Identifiers
DOI: 10.1158/0008-5472.CAN-08-3014
Source
Hunter Lab
License
Unknown

Abstract

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic component of two evolutionarily conserved signaling complexes. mTOR signaling complex 1 (mTORC1) is a key regulator of growth factor and nutrient signaling. S6 kinase is the best-characterized downstream effector of mTORC1. mTOR signaling complex 2 (mTORC2) has a role in regulating the actin cytoskeleton and activating Akt through S473 phosphorylation. Herein, we show that mTOR is phosphorylated differentially when associated with mTORC1 and mTORC2 and that intact complexes are required for these mTORC-specific mTOR phosphorylations. Specifically, we find that mTORC1 contains mTOR phosphorylated predominantly on S2448, whereas mTORC2 contains mTOR phosphorylated predominantly on S2481. Using S2481 phosphorylation as a marker for mTORC2 sensitivity to rapamycin, we find that mTORC2 formation is in fact rapamycin sensitive in several cancer cell lines in which it had been previously reported that mTORC2 assembly and function were rapamycin insensitive. Thus, phospho-S2481 on mTOR serves as a biomarker for intact mTORC2 and its sensitivity to rapamycin.

Report this publication

Statistics

Seen <100 times