Affordable Access

Access to the full text

Thermal gravitational separation of ternary mixture n-dodecane/isobutylbenzene/tetralin components in a porous medium

Authors
  • Larabi, Mohamed Aziz
  • Mutschler, Dimitri
  • Mojtabi, Abdelkader
Publication Date
Jan 01, 2016
Identifiers
DOI: 10.1063/1.4954244
OAI: oai:oatao.univ-toulouse.fr:15922
Source
Open Archive Toulouse Archive Ouverte
Keywords
Language
English
License
Green
External links

Abstract

Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the “forgotten effect hypothesis” established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained.

Report this publication

Statistics

Seen <100 times