Affordable Access

The thermal decomposition studies of solid iron bamboo (Dendrocalamus strictus) - potential precursor for eco-materials.

Authors
Type
Published Article
Journal
Bioresource Technology
0960-8524
Publisher
Elsevier
Publication Date
Volume
99
Issue
11
Pages
5110–5114
Identifiers
PMID: 17977721
Source
Medline
License
Unknown

Abstract

Block samples of carbonized solid iron bamboo (Dendrocalamus strictus) - unique genus among bamboos, were prepared by means of slow pyrolysis. They are expected to be promising monolithic supports for various composites. The purpose of this study is to describe the thermal decomposition of rectangular shapes cut from solid stems of Dendrocalamus strictus, raw and pre-charred in a wide range of temperatures: 300, 350, 400, 500 and 600 degrees C. The DTG thermograms of carbonized solid iron bamboo (char), determined at temperatures up to 900 degrees C, exhibited minima even for samples previously pyrolysed at temperatures over 400 degrees C, at which decomposition of plant material have to be completed. For pre-charred samples, the temperature of the DTG peaks increased, while the weight loss registered in the temperature range up to 900 degrees C decreased, with increasing temperature of carbonization. It was found that extension of time of holding at final temperature of carbonization decreased a height of the DTG peaks to full reduction of it after heating along the time of 8h. It was suggested that bamboo tar remaining in vessels after carbonization reacts with the bamboo char creating new compounds that decompose in distinctly higher temperatures.

Statistics

Seen <100 times